Nanoscience and Computational Chemistry
Research Progress

Editors:
Andrew G. Mercader, PhD, Research Institute of Theoretical and Applied Physical-Chemistry (INIFTA), Argentina
Eduardo A. Castro, PhD, Superior Researcher, Argentina National Research Council
A. K. Haghi, PhD, Associate Member of University of Ottawa, Canada;
Editor-in-Chief, International Journal of Chemoinformatics and Chemical Engineering;
Editor-in-Chief, Polymers Research Journal

This book provides innovative chapters covering new methodologies and important applications in the fields of nano and computational chemistry. The book offers scope for academics, researchers, and engineering professionals to present their research and development works that have potential for applications in several disciplines of nano and computational chemistry.

Contributions range from new methods to novel applications of existing methods to help readers gain an understanding of the material and/or structural behavior of new and advanced systems. This book is a high quality tool for researchers, providing an overview of the field, explaining the basic underlying theory at a meaningful level, and giving numerous comparisons of different methods.

CONTENTS
Preface
Chapter 1: Advances on Applications of Nanotechnology to Drug Delivery: A Biopharmaceutical Perspective
Carolina L. Bellera, Andrea V. Enrique, Alan Talevi, and Luis E. Bruno-Blanch
Chapter 2: Radio-Labelled Nanoparticles Using β+ Radionuclides as Diagnostic Agents: An Overview and a Chemotopological Approach
Nancy Y. Quintero, Isaac M. Cohen, and Guillermo Restrepo
Chapter 3: Carbon-Based High Aspect Ratio Polymer Nanocomposites
Thomas Gkourmpis
Chapter 4: Ultrafast Laser Dynamics on Molecular Nanomagnets
George Lefkidis
Chapter 5: Alternant Conjugated Organic Oligomers as Templates for Sustainable Carbon Nanotube-Based Molecular Nanowire Technologies
Sergio Manzetti
Chapter 6: Designing of Some Novel Molecular Templates Suitable for Hydrogen Storage Applications: A Theoretical Approach
Sukanta Mondal, Arindam Chakraborty, Sudip Pan, and Pratim K. Chattaraj
Chapter 7: Computational Insights of Adsorption and Catalysis Within Nanoporous Zeolites
Gang Yang
Chapter 8: Cluster Bundlet Model of Single-Wall C, BC,N and BN Nanotubes, Cones and Horns
Francisco Torrens and Gloria Castellano
Chapter 9: Computational Strategies for Nonlinear Optical Properties of Carbon Nano-Systems
Shahbir Muhammad and Masayoshi Nakano
Chapter 10: Modern Density Functional Theory: A Useful Tool for the Computational Study of Nanotechnology
Reinaldo Pis Diez
Chapter 11: Molecular Dynamics Simulations: Applicability and Scopes In Computational Biochemistry
Kishatree Dutta Dutby and Rajendra Prasad Ojha
Chapter 12: Structural Information from Molecular Descriptors Based on The Monte Carlo Method: Applications to Nanoscale Structures
Dan Ciubotariu, Valentin Gagonea, and Ciprian Ciubotariu
Index
Nanoscience and Computational Chemistry
Research Progress

ABOUT THE EDITORS

Andrew G. Mercader, PhD, studied physical chemistry at the Faculty of Chemistry of La Plata National University (UNLP), Buenos Aires, Argentina, from 1995-2001. Afterwards he joined Shell Argentina to work as Luboil, Asphalts and Distillation Process Technologist as well as Safeguarding and Project Technologist, from 2001-2006. His PhD work on the development and applications of QSAR/QSPR theory was performed at the Theoretical and Applied Research Institute located at La Plata National University (INIFTA), from 2006-2009. He obtained a post-doctoral scholarship to work on theoretical-experimental studies of biflavonoids at IBIMOL (ex PRALIB), Faculty of Pharmacy and Biochemistry, University of Buenos Aires (UBA), from 2009-2012. He is currently a member of the Scientific Researcher Career in the Argentina National Research Council at INIFTA.

Eduardo A. Castro, PhD, began his career by studying physical chemistry at the Faculty of Chemistry of the La Plata National University of La Plata, Buenos Aires, Argentina, during 1963-70. His diploma work to earn his PhD degree was on the calculation of HMO and related semi-empirical methods of beta-carotene for analyzing chemical reactivity and electronic spectrums. He became a research scientist at the Theoretical and Applied Research Institute located at La Plata National University where he founded the Group for Theoretical Chemistry in 1974. He was appointed as a member of the Scientific Researcher Group of the Argentina National Research Council, and he continues currently as a Superior Researcher.

A. K. Haghi, PhD, holds a BSc in urban and environmental engineering from University of North Carolina (USA); a MSc in mechanical engineering from North Carolina A&T State University (USA); a DEA in applied mechanics, acoustics and materials from Université de Technologie de Compiègne (France); and a PhD in engineering sciences from Université de Franche-Comté (France). He is the author and editor of 65 books as well as 1000 published papers in various journals and conference proceedings. Dr. Haghi has received several grants, consulted for a number of major corporations, and is a frequent speaker to national and international audiences. Since 1983, he served as a professor at several universities. He is currently Editor-in-Chief of the International Journal of Chemoinformatics and Chemical Engineering and Polymers Research Journal and on the editorial boards of many international journals. He is also a member of the Canadian Research and Development Center of Sciences and Cultures (CRDCSC), Montreal, Quebec, Canada.

488 pp. with index
$149.95 US | £95.00 hardback.
Available November 2013.

Order your copy of Nanoscience and Computational Chemistry Materials today.
Save 15% when you order online and enter promo code APP12.
FREE standard shipping when you order online only.

TO ORDER ONLINE: Go to http://www.appleacademicpress.com/title.php?id=9781926895598

Published by Apple Academic Press, Inc.

Prices subject to change without notice. 5/1/2013